CHARACTERIZATIONS OF EXTREMELY AMENABLE FUNCTION ALGEBRAS ON A SEMIGROUP

A. Riazi and G.H. Esslamzadeh

Department of Mathematics, University of Shiraz, Shiraz, Islamic Republic of Iran

Abstract

Let S be a semigroup. In certain cases we give some characterizations of extreme amenability of S and we show that in these cases extreme left amenability and extreme right amenability of S are equivalent. Also when S is a compact topological semigroup, we characterize extremely left amenable subalgebras of C(S), where C(S) is the space of all continuous bounded real valued functions on S.

Introduction

Let S be a semigroup, B(S) the Banach algebra of all bounded real valued functions on S, βS the Stone-Cech compactification of S, $Ml(S) \subseteq B(S)^*$ the linear span of the set of left invariant means on S and $Mr(S) \subseteq B(S)^*$ the linear span of the set of right invariant means on S. Granirer [2, Theorem 3] has shown that S is extremely left amenable if and only if βS has a right zero. We show that when S has a cancellative left ideal, S is extremely left amenable if and only if βS has a right zero. Also when S has a cancellative ideal (or when $0 < dim\ Ml(S) < \infty$ and $0 < dim\ Ml(S) < \infty$), extreme left amenability, extreme right amenability and existence of a unique multiplicative invariant mean on S are equivalent. Similar results are proved for compact topological semigroups.

In addition, if S is a compact topological semigroup and C(S) the set of all continuous functions in B(S), two characterizations of extremely left amenable subalgebras of C(S), which had been given for B(S) by Granirer [3, Theorem 5], are given with a different proof.

Some Notations

Let K be the intersection of all ideals of the compact semigroup S. By [4, Theorem 9.21] $K \neq \emptyset$ and it is the

Keywords: Multiplicative invariant means; Extreme amenability *1980 Mathematics Subject Classification (1985 Revision) 43 A07

minimal ideal of S.

Let $f \in B(S)$, for $a \in S$ define $af(t) = f(at)[f_a(t)] = f(ta)[f_a(t)]$ the left [right] translation of f by a. If A is a left invariant subalgebra of B(S) (i.e. A is an algebra and $af \in A$ for all $f \in A$ and all $a \in S$), then the ideal $H_t(A)$ of A is the set of all $h \in A$ which have a representation $h = \sum_{i=1}^{n} f_i(g_i - a_ig_i)$ where $f_i, g_i \in A, a_i \in S, i = 1, ..., n$. The ideal $H_r(A)$ is defined in a similar way and H(A) is the ideal of A containing all A of the form $A = \sum_{i=1}^{n} f_i(g_i - a_ig_i) + \sum_{j=1}^{m} s_j(t_j - t_j b_j)$ where $f_i, g_i, s_j, t_j \in A, a_i, b_j \in S$.

A (left, right) invariant subalgebra A of B (S) which contains constants is called extremely (left, right) amenable denoted by EA (ELA, ERA), if it admits a multiplicative (left, right) invariant mean. When A = B(S) is extremely (left, right) amenable, we say that S is extremely (left, right) amenable.

ELA Semigroups

Throughout this section S denotes a semigroup.

Theorem 3.1. If the semigroup S has a right [left]

Theorem 3.1. If the semigroup S has a right [left] cancellative ideal I then the following are equivalent:

- (i) S is extremely amenable,
- (ii) S is ELA [ERA],
- (iii) |I| = 1,

(iv) S has a zero.

J. Sci. I. R. Iran

Proof. (i) \Rightarrow (ii) Trivial.

(ii) \Rightarrow (iii) Let $x_1, x_2 \in I$, by [2, Theorem 3] there is a $z \in S$ such that $x_1z = x_2z = z$ thus $z \in I$ and by assumption we can cancel z from both sides of $x_1z = x_2z$ i.e. $x_1 = x_2$.

(iii) \Rightarrow (iv) Clearly the single element of I is a zero of S. (iv) \Rightarrow (i) Let $a \in S$ be the zero element, then M defined by M(f) = f(a) for $f \in B(S)$ is obviously a multiplicative invariant mean.

Corollary 3.2. If the semigroup S has a cancellative ideal I or if 0 < dim ML (S) $< \infty$ and 0 < dim Mr (S) $< \infty$, then the following are equivalent:

(i) S is extremely amenable,

(ii) S is ELA,

(iii) S is ERA

(iv) S has a zero.

Proof. If $0 < dim \ Ml \ (S) < \infty$ and $0 < dim \ Mr \ (S) < \infty$, then by [1, Theorem 1] S has an ideal which is a group. Therefore, the corollary follows from Theorem 3.1.

ELA Function Algebras on Compact Semigroups

Theorem 4.1. The following conditions on a compact topological semigroup S are equivalent:

(i) B (S) has a unique multiplicative invariant mean,

(ii) S is extremely amenable,

(iii) |K| = 1,

(iv) S has a zero element,

(v) K has a zero element.

Proof. (i) \Rightarrow (ii) Trivial.

(ii) \Rightarrow (iii) Since $H(CB(S)) \subseteq H(B(S))$, then by [3, Theorem 2] C(S) is extremely amenable and by [5, Corollary 1) K is a group. Let $x_1, x_2 \in K$, by [2, Theorem 3] there is a $z \in S$ such that $x_1z = x_2z = z$ thus $z \in K$ and since K is a group, then $x_1 = x_2$.

(iii) \Rightarrow (i) Clearly the single element z of K is a zero of S, hence M on B (S) defined by M(f) = f(z) is a multiplicative invariant mean on B (S). To prove the uniqueness of M let M_1 be another multiplicative invariant mean on B (S). Since $l_z(\chi_S - \{z\}) = 0$, then $M_1(\chi_S - \{z\}) = M_1(l_z\chi_S - \{z\}) = 0$, hence $M_1(\chi\{z\} + \chi_S - \{z\}) = M_1(1) = 1$. Therefore, $M_1(\chi\{z\}) = 1$. Thus for all $f \in B(S)$. $M_1(f) = M_1(f\chi^{\{z\}}) = f(z)M_1(\chi^{\{z\}}) = f(z) = M(f)$ i.e. $M_1 = M$.

 $(iii) \Rightarrow (iv)$ Trivial.

(iv) \Rightarrow (v) Let z be the zero of S and $a \in K$, since $z = az \in K$, then z is the zero element of K.

(v) \Rightarrow (iii) By [4, Corollary 9.24] K is a union of pair wise disjoint groups. Let z be the zero element of K and $G \subseteq K$ be a group that contains z, since for all $g \in G$ we have

 $gz = z = z^2$ then g = z i.e. $G = \{z\}$. Suppose $G' \subseteq K$ is another group of the above type with identity e. Since ze = z = ez and K is completely simple [4, Theorem 9.21], then z = e. Therefore $G' = G = \{z\}$ i.e. $K = \{z\}$.

Vol.4 No.2 Spring 1993

Remark. The following theorem has been proved by E. Granirer for B(S) [3, Theorem 5]. But we state it for uniformly closed subalgebras of C(S). Part (i) \Rightarrow (ii) of proof depends on the compactness of S and is completely different from the work of Granirer, but other parts are similar.

Theorem 4.2. Let S be a compact right [left] topological semigroup and A be a uniformly closed left [right] invariant subalgebra of CB(S). The following are equivalent:

(i) A is ELA [ERA],

(ii) For any finite subset $\{g_1, ..., g_n\}$ of A and any $\{a_1, ..., a_n\}$ $\subseteq S$ there is an $a \in S$ such that for $1 \le i \le n$ we have:

$$(g_{i} - g_{i}g_{i})(a) = 0[(g_{i} - g_{i}g_{i})(a) = 0]$$

(iii) Every $h \in H_r(A)$ [$h \in H_r(A)$] has a zero in S.

Proof. (i) \Rightarrow (ii) Let $\{g_i, \dots, g_n\} \subseteq A$ and $\{a_i, \dots, a_n\} \subseteq S$. Since $h = \sum_{i=1}^{n} -(g_i - a_i g_i)^2 \in H_l(A)$, then by [3, Theorem 2]

we have $\sup_{x \in S} h(x) \ge 0$ and hence $\sup_{x \in S} h(x) = 0$. Since his continuous and S is compact, then h takes its supremum

at a point $a \in S$. Thus $\sum_{i=1}^{n} -(g_i - a_i g_i)^2 (a) = h(a) = 0$.

Therefore $(g_i - a_i g_i)(a) = 0$ for i = 1,..., n.

(ii) \Rightarrow (iii) Let $h = \sum_{i=1}^{n} f_i(g_{i\bar{i}} a_i g_i) \in H_l(A)$ and a be a com-

mon zero of $(g_l - a_l g_l)$, ..., $(g_n - a_n g_n)$. Clearly h(a) = 0.

(iii) \Rightarrow (i) This follows from [3, Theorem 2].

Remark. Compactness in Theorem 4.1 is necessary since if S = R with the usual topology and multiplication given by $x, y = max \{x, y\}$, then S is extremely amenable but does not have any zero element.

Acknowledgements

The authors thank referees for their suggestions and the Shiraz University Research Council for financial support grant no. 69-SC-620-329.

References

- 1. Granirer, E., A Theorem on Amenable Semigroups. *Trans. Amer. Math. Soc.* 111, pp. 367-379 (1964).
- Granirer, E., Extremely Amenable Semigroups. Math. Scand. 17 pp. 177-197, (1965).
- 3. Granirer, E., Extremely Amenable Semigroups II. *ibid.* 20 pp. 93-113, (1967).
- Hewitt, E. and Ross, K.A. Abstract Harmonic Analysis I. Springer-Verlag, Berlin-Heidelberg-New York (1963).
- 5. Rosen, W.G. On Invariant Means Over Compact Semi-

groups. *Proc. Amer. Math. Soc.* 7, pp. 1076-1082, (1956).

6. Sakai, K. Characterization of Amenable Semigroups with a

Unique Invariant Mean. *Proc. Japan Acad.*, Vol. 59, Ser. A, No.7 pp. 321-323, (1983).